
International Journal of Computer Science and Applications

c© Technomathematics Research Foundation

Vol. XX No. XX, pp. XXX - XXX, 20XX

Advanced in-home streaming to mobile devices and wearables

DANIEL POHL

Intel Corporation, Campus Saarbruecken E2.1,
66123 Saarbruecken, Germany

daniel.pohl@intel.com

BARTOSZ TAUDUL

Huuuge Games, Mickiewicza 53,
70-385 Szczecin, Poland
wolf.pld@gmail.com

RICHARD MEMBARTH

DFKI, Campus Saarbruecken D3.2,
66123 Saarbruecken, Germany
richard.membarth@dfki.de

STEFAN NICKELS

Intel Visual Computing Institute, Campus Saarbruecken E2.1,
66123 Saarbruecken, Germany

nickels.stefan@gmail.com

OLIVER GRAU

Intel Corporation, Campus Saarbruecken E2.1,
66123 Saarbruecken, Germany

oliver.grau@intel.com

The quality of real-time graphics on mobile devices has improved continuously. How-

ever, a large visual gap remains between images produced on e.g. a smartphone versus

images created on high-end PCs or a group of servers. To enable such high-�delity appli-

cations, in-home streaming can be used to make server-side rendered content available,

interactively, on mobile devices. For a high Quality of Experience it is important to have

high image quality and low latency. Our proposed new framework, which fully utilizes the

new 802.11ac wireless network standard, o�ers better image quality at half the latency of

other existing solutions. Further, we extend this concept to wearables like smartwatches.

Keywords: in-home streaming; streaming; wearables; virtual reality; smartwatch; low

latency; HPC; ray tracing; big data visualization; gaming.

1



2 Daniel Pohl, Bartosz Taudul, Richard Membarth, Stefan Nickels, Oliver Grau

1. Introduction

The advent of powerful handheld devices like smartphones and tablets o�ers the

ability for users to access and consume media content almost everywhere with-

out the need for wired connections. Video and audio streaming technologies have

dramatically evolved and have become common technologies. However, in scenar-

ios where users need to be able to interact with the displayed content and where

high image quality is desired, video streaming derived technologies are typically

not suitable since they introduce latency and image artifacts due to high video

compression. Remote desktop applications fail when it comes to using 3D graphics

applications like computer games or real-time visualization of big data in scienti�c

High-Performance Computing (HPC) applications. Enabling these applications over

Internet connections su�ers signi�cantly due to restrictions induced by the limits

of today's Internet bandwidth and latency. Streaming those in local networks, com-

monly referred to as in-home streaming, still remains a very challenging task in

particular when targeted at small devices like tablets, smartphones or wearables

that rely on Wi-Fi connections.

In this article, we present a novel lightweight framework for in-home streaming

of interactive applications to small devices, utilizing the latest developments in wire-

less computer networking standards, IEEE 802.11ac [Wireless LANWorking Group,

2013], for mobile devices and wearables. Further, we use a distributed rendering

architecture [Chalmers and Reinhard, 1998] in combination with a high-quality,

hardware-accelerated decompression scheme utilizing the capabilities of modern

handheld devices, resulting in much higher image quality while requiring only half

the latency compared to other streaming solutions.

The main novelties compared to our previous version [Pohl et al., 2014] are

(1) additional lossless LZ4 compression that enables streaming at higher screen

resolution and/or additional power savings on the client (e.g. 725 mA instead of

850 mA), (2) extending our concept towards wearables, e.g. a smartwatch, running

at 85 fps, (3) using front bu�er rendering to save one frame of latency, (4) additional

dithering step to reduce compression artifacts. We release our framework as open

source.

The setup is shown in Figure 1. The main application is running on a server

or even a group of servers. Via network connection, the graphical output of the

server application is streamed to a client application running on a mobile de-

vice. In addition, a back channel connection is present that collects user input

events on the client and sends it back to the server. The server reacts to this

input and produces an updated image, which is then transferred back and dis-

played at the client. The Quality of Experience is determined mainly by two

factors: �rstly, the delay between a user input issued on the client and the

server-provided graphics refresh displayed at the client should be as low as pos-

sible. Secondly, the graphics quality of the streamed application on the client side

should be as high as possible, even during scenarios with high motion.



Advanced in-home streaming to mobile devices and wearables 3

Figure 1. Distributed rendering, in-home streaming setup targeted at mobile devices. The four
servers are rendering an image. Over Gigabit-Ethernet they transport it to a router with support
for IEEE 802.11ac. The router sends the image data wirelessly to the client device (smartphone)
which displays it.

2. Related Work

In this section we give an overview of known streaming technologies and applica-

tions, which we separate into three classes.

Classical desktop sharing and terminal applications: Examples are Microsoft's

Remote Desktop Connection or VNC (Virtual Network Computing) [Richardson

et al., 1998]. These are optimized for typical 2D applications like text processing

or spreadsheet calculations. 3D support is typically very limited and, if supported,

not capable to cope with the demands of real-time 3D games and visualizations.

Cloud gaming : The second class of streaming technologies has emerged from the

�eld of computer gaming. Popular commercial solutions like Gaikai or OnLive aim at

streaming applications, mainly games, via Internet connection from a cloud gaming

server to a user's desktop. There are also open source approaches like Gaming

Anywhere [Huang et al., 2013]. All of these are speci�cally optimized for usage

with Internet connections and typically rely on the H.264/MPEG-4 AVC [Wiegand

et al., 2003] video codec for streaming graphics. Gaikai and OnLive require a 3-5

Mbps Internet connection at minimum and end-to-end latency values are at best 150

ms under optimal conditions (c.f. [Huang et al., 2013]). OnLive uses a proprietary

hardware compression chip in dedicated gaming servers hosted by OnLive. Gaikai's

approach has meanwhile been integrated into the PlayStation 4 console after Sony



4 Daniel Pohl, Bartosz Taudul, Richard Membarth, Stefan Nickels, Oliver Grau

acquired the company and has been renamed to "PlayStation Now". The service

is limited on both the client and server side to dedicated hardware. In general,

cloud gaming approaches are not optimized for in-home streaming, sacri�cing image

quality for lowering network tra�c and reducing processing latency.

Dedicated in-home streaming : The third category are approaches designed for

delivering applications to other devices in a local network using wired or wire-

less connections. Recently, Valve's game distribution platform Steam introduced

in-home streaming support. Nvidia released a portable game console named Shield

in 2013, based on hardware for mobile devices running an Android operating sys-

tem. Games can be streamed from a PC to the console. Both approaches rely again

on the H.264 codec and are exclusively capable of streaming games. In addition,

Nvidia Shield is bound to Nvidia graphics cards and mobile platform architectures.

A further streaming approach, which also handles in-home usage, is Splashtop. It

can stream any application, game or the complete desktop from a single machine

using H.264 compression.

We are not considering solutions like Miracast, Intel's WiDi or Display as a Ser-

vice [Lö�er et al., 2012] as these are aimed at just replicating pixels to another dis-

play, not at interactively using the streamed application on a client device. Further,

we exclude approaches like Games@Large [Nave et al., 2008], or GLX [McReynolds,

1996] that stream hardware-speci�c 3D function calls that are usually not compat-

ible with mobile devices.

3. System

In this section, we propose a new framework for streaming applications from one or

many high-end machines to a mobile device or wearable. Using a hardware-enabled

decompression scheme in combination with a distributed rendering approach, we

fully utilize the potential of recent progress in wireless computer networking stan-

dards on mobile devices. With this setup we achieve higher image quality and sig-

ni�cantly lower latency than other established in-home streaming approaches. We

�rst give an overview of the hardware setup used in our approach. Then, we explain

our decision on the compression scheme we used and after that we talk about the

details of our software framework and application setup.

3.1. Hardware Setup

Our distributed rendering setup consists of four dual-socket workstations using the

Intel Xeon X5690 CPUs (6 cores, 12 threads, 3.46 GHz) and the Intel 82575EB

Gigabit Ethernet NIC. The client is a LG Nexus 5 smartphone which uses the

Snapdragon 800 CPU (4 cores, 2.3 GHz) with the Adreno 330 GPU (450 MHz) and

the Broadcom BCM4339 802.11ac wireless chip. The devices are connected together

through a Netgear R6300 WLAN Gigabit Router. The servers use wired Gigabit

Ethernet to connect to the four Ethernet ports of the router. The smartphone

connects wirelessly over 802.11ac (1-antenna setup).



Advanced in-home streaming to mobile devices and wearables 5

3.2. Compression Setup

First, we have a look at how displaying of streamed content is usually handled on

the client side. Using the popular video library FFmpeg and the H.264 codec an

arriving stream at the client needs to be decoded. Using a CPU-based pipeline, the

decoding result is an image in the YUV420 color format. As this format is usually

not natively supported for displaying, the data is converted into the RGB or RGBA

format. From there, the uncompressed image data will be uploaded to the graphics

chip to be displayed.

If a hardware H.264 decoder is available, then the arriving stream needs to

be converted into packets, suited for that hardware unit and uploaded to it. The

decoding process is started over a proprietary API and usually acts as a black box.

Some decoders only handle parts of the decompression procedure; others do the full

work and o�er an option for either directly displaying the content or sending it back

into CPU memory. Hardware H.264 decoders are usually optimized to enable good

video playback, but not speci�cally for low-latency.

Next, we have a look at our approach on displaying streamed content. An im-

portant feature of modern mobile device GPUs is, that they have native support

for displaying ETC1 [Ström and Akenine-Möller, 2005] textures (mandatory since

OpenGL ES 3.0, but widely supported as an extension in previous versions). There-

fore, once an ETC1 compressed image arrives at the client, we can directly upload it

to the graphics chip where decoding to RGB values happens directly during render-

ing through support in the texture units. Given the �xed compression ratio of ETC1

of 1:6 for RGB data, the required transfer to the graphics chip is lower compared

to uploading uncompressed RGB or RGBA data as described in the CPU-based

pipeline for H.264.

ETC1 does an image by image (intra-frame) compression instead of using in-

formation across multiple frames (inter-frame). Therefore, even if there is a lot of

motion between frames, a robust image quality is guaranteed. The video codec

MJPEG [Vo and Nguyen, 2008] also has this characteristic, but as it lacks hard-

ware decompression support on mobile devices, it is not suited as it still requires

non-accelerated decompression and the more bandwidth-intensive upload of uncom-

pressed RGB/RGBA pixels to the GPU. Nevertheless, when comparing the image

quality of an intra-frame with an inter-frame approach (like H.264) at the same bit

rate, the latter will usually be of higher quality. However, codecs with inter-frame

compression usually have higher latency.

To get better results, we are using an additional on-top, lossless compression

scheme. ETC1 compression is designed for a �xed data size reduction in GPU

memory, where image reconstruction speed of randomly accessed pixels is of the

utmost importance. This is in a stark contrast to the more traditional approaches

using dictionary coders or Hu�man trees, which target tight packing of data and

rely on stream decoding. Combining those two techniques together would allow us

to transfer more raw image data within the limited data rate of the connection.



6 Daniel Pohl, Bartosz Taudul, Richard Membarth, Stefan Nickels, Oliver Grau

For our needs, we had to use a very fast compression algorithm, both on the

server and especially on the client, which is much more limited in terms of computa-

tional power. The best currently available solution is the LZ4 library, o�ering very

high speed with 422 MB/s compression and 1820 MB/s decompression on an Intel

Core i5-3340M processor, which beats the industry standard DEFLATE algorithm

used in the zlib library by an order of magnitude. Despite being a relatively new

compression algorithm, LZ4 is already well spread and used in software such as the

Linux kernel. We also performed tests with the HC (High Compression) variant of

LZ4, which o�ers even higher decompression speed, but is on par with zlib concern-

ing compression speed. The resulting frame rate drop convinced us that currently

it makes no sense to explore other compression schemes.

3.3. Software Setup

The Microsoft Windows 7, 64-bit servers are running our custom written HPC ray

tracing software, partly accelerated by Intel Embree [Wald et al., 2014] and multi-

threaded through Intel Cilk Plus [Madhusood, A., 2013]. The ray tracer can be given

the task to only render certain regions of the complete image. The ray tracer hands

over the image section to the streaming module of our framework. This module can

compress image data into the ETC1 format by using the etcpak library which we

multi-threaded using Intel Cilk Plus. LZ4-compressed data can be sent to the client

using TCP/IP, supported by libSDL_net 2.0. Further, the server listens on a socket

for updates that the client sends.

The client runs Android 4.4.4 and executes an app that we wrote using

libSDL 2.03, libSDL_net 2.0, LZ4 r123 and OpenGL ES 2.0. All relevant logic has

been implemented using the Android Native SDK (NDK r10d).

In the initialization phase the client informs the servers about the rendering

resolution and which parts the render server should handle, parameters for loading

content, and initial camera settings for rendering. Then the client will receive an

image (or part of it) from the server. After the initialization steps the following

procedure as described in Figure 2 will be processed every frame. The client checks

for user input (like touch or accelerometer and magnetometer readings) and inter-

prets this into changes in the camera setup (this step can also be done on the server

side to stay application-independent). Those new settings, an unique time stamp

and other application relevant data (total of 192 bytes) are then sent to the server.

The server receives this over the network and updates its internal state. An image

(or part of it) is rendered, then compressed to ETC1, compressed (lossless) using

LZ4 and sent to the client. There, the compressed image data is LZ4-decompressed

to ETC1 format and uploaded as an OpenGL ES texture. Next, a quad is drawn

on the screen using that texture at the representing areas that have been assigned

earlier to the rendering server.

The rendering algorithm used here, ray tracing, is known as an "embarrassingly

parallel" problem [Fox et al., 1994] with very high scalability across the number

of cores, CPUs and servers, because rendering the image can be split into smaller,



Advanced in-home streaming to mobile devices and wearables 7

Figure 2. Tasks of the client and server architecture.

independent tasks without extra e�ort. Therefore, for the multi-server setup we

naïvely split the image into four parts (one for each server), dividing the horizontal

resolution by 4 and keeping the full vertical resolution. In order to achieve good

scaling for a high number of servers, we recommend instead using smaller tiles and

to smartly schedule them over e.g. task stealing [Singh et al., 1994]. In addition to

Figure 2, the client will now send one packet (192 bytes) to each server regarding

the updates. The client will get the �rst part of the image from the �rst server,

upload it as OpenGL ES texture, receive the second part of the image and so on.

As exemplary rendering content the "island" map from the game Enemy Terri-



8 Daniel Pohl, Bartosz Taudul, Richard Membarth, Stefan Nickels, Oliver Grau

tory: Quake Wars (id Software and Splash Damage) and a sample scene containing

the Stanford bunny are used.

It is our goal to make a very smooth experience by fully utilizing the display

refresh rate of the smartphone (60 Hz). Given the properties of our hardware setup

we choose to render at 1280×720 pixels instead of the full physical display resolution

of the Nexus 5 (1920 × 1080 pixels) as it was in the current setup not possible to

guarantee higher resolutions with 60 Hz due to limitations of the data rate of a

1-antenna 802.11ac setup in the smartphone.

4. Results

Here, we evaluate our and other in-home streaming approaches in terms of compres-

sion rate, data rate, latency, image quality and power consumption. We compare our

implementation with Nvidia Shield (Android 4.3, System Update 68) and Splashtop

(Splashtop Personal 2.4.5.8 and Splashtop Streamer 2.5.0.1 on the Nexus 5). While

using Steam's in-home streaming, we encountered a high amount of frame drops

during our tests, so we will not further compare it here.

4.1. Compression Rate

While ETC1 compression has a �xed ratio of 1:6 for compressing RGB image data,

the ratio for using lossless LZ4 compression on the ETC1 blocks varies. We tested

the compression of various screenshots from �ve games to see how e�cient the

additional LZ4 compression works. The average additional gains from using LZ4 on

ETC1 blocks are:

Title Compression Ratio LZ4 : ETC1

Angry Birds 1 : 3.8
BioShock In�nite 1 : 1.7
Far Cry 3 1 : 1.3
Max Payne 3 1 : 1.9
Enemy Territory: Quake Wars 1 : 1.5

4.2. Data Rate

The wireless networking standard 802.11ac allows a maximum data rate of 433

Mbit/s (for a 1-antenna setup). Hardware tests show an e�ective throughput of 310

Mbit/s (38.75 MB/s) for our router [Ahlers, 2014]. As our rendering resolution is

1280 × 720 pixels and has 8 bit per color channel this makes about 2.64 MB per

image for uncompressed RGB data. Using ETC1 with the �xed compression ratio

of 1:6 leads to 0.44 MB per image. Assuming the e�ective throughput, this results

in a maximum of about 88 frames per second (fps), not including additional savings

through the lossless LZ4 compression.



Advanced in-home streaming to mobile devices and wearables 9

4.3. Latency

The total latency from a user input to an update on the screen (motion-to-photons

time) can have various causes of lag in an interactive streaming setup. The user input

takes time to get recognized by the operating system of the client. Next, the client

application needs to react on it. However, especially in a single-threaded application,

the program might be busy doing other tasks like receiving image data. Afterwards,

it takes time to transfer that input (or its interpretation) to the rendering server

over network. There, the server can process the new data and start calculating the

new image. Then compression takes place and the data is sent to the client, which

might be delayed if the client is still busy drawing the previous frame. Once the

image data is received, it will be uploaded to the GPU for displaying. Fixed refresh

rates through VSync might add another delay before the frame can be shown.

Some displays have input lag, which describes the time di�erence between sending

the signal to the screen and seeing the actual content there.

For the following measurements of our implementation we took the setup with

four servers. As the distributed rendering approach does not work with the solutions

we are comparing to, we modi�ed the setup to use only one server and a very simple

scene that achieves the same frame rate on a single machine as our four servers in the

more complex rendering scenario. That way we have a fair comparison of the latency

across the approaches. To get accurate motion-to-photons time we captured videos

of user input and waiting for the update on the screen. Those videos are sampled at

480 frames per second using the Casio Exilim EX-ZR100 camera. In a video editing

tool we analyzed the sequence of frames to calculate the total latency.

Using our approach led to a motion-to-photons latency of 60 to 80 ms. On

Nvidia Shield, which uses H.264 video streaming, we measured 120 to 140 ms. The

Splashtop streaming solution, also relying on H.264, shows 330 to 360 ms of lag.

We visualized this in Figure 3.

Figure 3. Latency of in-home streaming solutions in ms. Lower is better.

One of the causes that increase latency even more is the usage of multiple bu�ers

for graphics. For example, when displaying the image on the screen of the client,

OpenGL uses double (or even triple) bu�ering. In one bu�er the current image is



10 Daniel Pohl, Bartosz Taudul, Richard Membarth, Stefan Nickels, Oliver Grau

drawn, while the previous bu�er is displayed. At a display refresh rate of 60 Hz this

adds additional 16.6 ms of latency. Double bu�ering is the default in all modern

architectures and can usually not be changed to a single bu�er, with one excep-

tion. The Samsung Galaxy Note 4, which is also used for the virtual reality device

Samsung Gear VR, has a special interface that allows enabling single bu�ering to

reduce latency. This is enabled through the egl_GVR_FrontBu�er() function and

a call to enable GL_WRITEONLY_RENDERING_QCOM. In portrait mode the

screen will be updated from left top to left bottom, then continuing right from it,

again from top to bottom. To avoid artifacts, it needs to be precisely timed when

new pixels are put into the bu�er. For a stereoscopic image, this means that after

the screen updated the left eye view and starts working on displaying the new right

eye view, the left area can be updated. We enabled the front bu�er rendering mode,

but for test purposes did not implement the necessary timing, therefore we saw

some artifacts. Running on the Note 4 with front bu�ering enabled, we measured

a latency of about 55 to 70 ms, down from 70 to 85 ms that we measured on that

device without front bu�ering. The last number is a bit higher than on the Nexus 5,

presumably due to higher touch screen latency on the Note 4.

4.4. Image Quality

To analyze the di�erence in image quality we chose one image of a sequence in

which a lot of camera movement is happening as shown in Figure 4. We quantify

the image quality using the metrics of Peak Signal-to-Noise Ratio (PSNR) [Wang

et al., 2002] and Structural Similarity (SSIM) [Wang et al., 2004] index, which

takes human visual perception into account. For Nvidia Shield and Splashtop we

were not able to test the distributed rendering setup, so we precalculated the ray

traced frames o�ine and played them back from a single machine at the same speed

that they would have been generated using four servers. That way a fair comparison

of the image quality happens across all approaches. In Table 1, one can see that our

approach has better image quality compared to Nvidia Shield, Splashtop and H.264

encoding at 5 Mbit/s. As expected, higher bit rate inter-frame encoding o�ers even

higher image quality: going to 50 Mbit/s using H.264 succeeds the quality delivered

by ETC1. Using an even higher bit rate than 50 Mbit/s during H.264 encoding does

practically result in the same image quality for our setup.

As an additional option to reduce ETC1 compression artifacts, we added support

for Floyd-Steinberg dithering [Floyd and Steinberg, 1976]. This step needs to be

done before the ETC1 compression, to reduce the source image color depth from

RGB888 to RGB565. Since ETC1 blocks encode the average color in RGB444 or

RGB555 color space, the fewer colors there are in the source data, the easier it is

to �nd a good �t for all pixels in a block. The results can be seen in Figure 5.

4.5. Performance

Even without the lossless LZ4 compression, we are able to achieve 60 frames per

second at 1280 × 720 pixels. Given the ETC1 compression ratio of 1:6, this corre-



Advanced in-home streaming to mobile devices and wearables 11

Figure 4. Left: Previous frame. Right: Frame for analysis with marked red area.

Figure 5. The �rst three images show a close-up of the bunny: original, ETC1-compressed with-
out dithering and ETC1-compressed with dithering. The last three images are analogue from a
screenshot of BioShock In�nite.

sponds to an e�ective throughput of 210.93 Mbit/s (26.36 MB/s). We �rst look at

the time spent without using LZ4 compression. The relevant components on the

server side are rendering of the image region (∼7 ms), network transfer (∼3 ms)

and ETC1 compression (∼2 ms). On the client side, network transfer (∼12 ms)

and OpenGL ES commands including swapping the display bu�er and waiting on

VSync (∼4 ms) are the most time consuming tasks. Once we enable additional LZ4
compression, the server needs less than 0.1 ms for that step. The client takes about

1 ms for decompression. But, because now less data is transferred, the time for the

network transfer goes down. This means, that as long as the compression rate (see

Section 4.1) is about 1 : 1.1 or better, LZ4 compression should be enabled. Depend-

ing on the compression rate of the used content, our in-home streaming approach

can be used for higher resolutions than 1280 × 720 pixels, despite the data rate

limitations of the 1-antenna 802.11ac setup.

4.6. Battery Drain

For the Nexus 5 we use the "CurrentWidget" app. In our approach, we observed an

average battery usage of 850 mA, 605 mA for Splashtop and 874 mA for the locally

rendered 3D game "Dead Trigger 2" (Mad�nger Games). The higher battery usage

of our approach compared to Splashtop can be explained by the fact that we are

handling much more data. The Nvidia Shield console uses di�erent hardware; there-



12 Daniel Pohl, Bartosz Taudul, Richard Membarth, Stefan Nickels, Oliver Grau

Original H.264
211 Mbit/s

H.264
50 Mbit/s

ETC1 H.264
5 Mbit/s

Splashtop Nvidia
Shield

PSNR - 47.0 46.9 37.3 32.9 31.0 29.8

SSIM 1.0 0.997 0.997 0.978 0.877 0.861 0.779

Table 1. PSNR and SSIM values for di�erent codecs and platforms, exempli�ed by respective
image sections (contrast-enhanced) as marked in Figure 4. Higher values are better. While with
a high bit rate the image quality of H.264 surpasses ETC1, the later approach has signi�cantly
lower latency, which we show in section 4.3.

fore, the architectural di�erence has impact on the result and cannot be compared

directly. Nevertheless, we report the number for completeness. The "CurrentWid-

get" app does not work on Nvidia Shield, so we measured the drop in percentage of

the available battery power for an hour and by knowing the total battery capacity

we got a value of 880 mA.

Our approach has been measured without LZ4 compression above. Once enabled,

and if a high enough compression can be reached, then less battery usage can be

observed. With a compression ratio of LZ4 to ETC1 of 1 : 1.8, the average battery

usage was 725 mA.

5. Enhanced Applications

In this section, we have a look on various application scenarios that are enhanced

by our high-quality, low latency in-home streaming solution. These can vary widely

as the content of the displayed image is independent of the internals of the used

compression, transportation and displaying method.

High-quality Gaming

As there are already products evolving for in-home streaming for games, like

Nvidia Shield and Steam's in-home streaming, this could potentially be an area of

growth. The bene�ts are e.g. to play on the couch instead of sitting in front of a

monitor or to play in another room where an older device is located that would not

be able to render the game in the desired high quality. In fast-paced action games

like �rst person shooters, it is important to be able to react as fast as possible, there-

fore, our reduced latency setup enriches the gaming experience. The commercially

available solutions for in-home streaming of games are typically limited to using the

rendering power of only one machine. Through the distributed rendering approach



Advanced in-home streaming to mobile devices and wearables 13

we potentially enable closer to photo-realism games by combining the rendering

power of multiple machines.

Virtual Reality for Smartphones

For virtual reality there are projects like FOV2GO, Durovis Dive (see Figure 6)

and Samsung Gear VR that developed cases for smartphones with wide-angle lenses

attached to it. Once this is strapped on the head of a user, mobile virtual reality can

be experienced. For a good Quality of Experience high-quality stereo images need

to be rendered that have pre-warped optical distortion compensation to cancel out

spatial and chromatic distortions of the lenses. While this works well on desktop

PCs [Pohl et al., 2013], the performance and quality that smartphones can achieve

today is not very compelling for high-end, immersive virtual reality. To achieve

higher image quality, these applications have to switch from a local to a server-

based rendering approach. As latency is an even more important issue in virtual

reality, our latency-optimized approach is in particular suitable for this scenario.

Solutions with a latency of 120 to 140 ms (Nvidia Shield) would lead to much more

motion sickness compared to a latency of 60 to 80 ms. Nevertheless, optimizing

virtual reality streaming applications for even lower latency might become more

relevant in the future.

Figure 6. A mobile virtual reality platform that can be strapped on the head. In front of the case
a smartphone is plugged in. Lenses bring the image into focus for the viewer. To compensate for
optical distortions a high-quality, pre-warped stereoscopic image is used and streamed with low
latency using our framework.

Wearables

One of the emerging trends in the space of wearables are smartwatches. E.g.

the Simvalley AW-421.RX is a fully independent Android device, equipped with its

own CPU and GPU, 802.11n Wi-Fi and a 240x240 resolution display running at

120 Hz. Size, battery life and cost are limiting factors, so these devices are usually



14 Daniel Pohl, Bartosz Taudul, Richard Membarth, Stefan Nickels, Oliver Grau

equipped with less capable processing units compared to other mobile devices. Us-

ing our in-home streaming approach, we were able to interact with server-generated

content to unlock the full power of smartwatches�independent of their weak inter-

nal components. We achieved a frame rate of 85 frames per second on this device

(see Figure 7).

Figure 7. Smartwatch running an interactive, server-calculated app at 85 frames per second

HPC and Big Data

A scenario where our streaming solution is also well suited for is real-time visual-

ization of data-intensive computations like in the big data and HPC domain. Here,

specialized applications either run analyses on huge amounts of data or computa-

tionally intensive calculations, typically relying on powerful back ends with a high

amount of system memory. Typical application domains are health sciences, simu-

lations in engineering, geographic information systems or marketing and business

research. Being able to control, monitor and visualize these computations running

on big server farms from small handheld devices is a very convenient bene�t. Our

solution, in comparison to other in-home streaming approaches, enhances graphics

streaming for HPC applications as it supports a distributed scheme for rendering

natively at high-quality and low latency. A testbed where we are currently in-

tegrating our streaming solution into is the molecular modeling and visualization

toolkit BALL/BALLView [Hildebrandt et al., 2010; Moll et al., 2006], see Figure 8.

In BALLView, running computationally demanding molecular dynamics simulations

in combination with real-time ray tracing visualization on complex molecular data

sets [Marsalek et al., 2010] requires a powerful compute server.

6. Conclusion and Outlook

We have shown a new approach to in-home streaming that fully leverages the lat-

est development in wireless network standards and utilizes a hardware-accelerated



Advanced in-home streaming to mobile devices and wearables 15

Figure 8. Molecular visualization from BALLView displayed on a mobile device.

intra-frame decompression scheme supported by modern mobile devices and wear-

ables. The approach is well suited for streaming of interactive real-time applications

and o�ers signi�cantly higher image quality and half the latency in comparison to

other recent solutions targeting this space.

Further optimizations like hardware encoders for ETC, switching to ETC2 com-

pression and using a 2 × 2 antenna network connection setup, as supported by

IEEE 802.11ac, will lead to even higher image quality, faster performance and will

enable 1080p at 60 frames per second.

7. Appendix

7.1. Open Source

We include the source code of a minimal ray tracer (minrt) and a minimal in-

home streaming client (minclient), which implements the described framework from

this article. It comes with a simple test scene that includes the Stanford bunny.

minrt runs under current versions of Microsoft Windows 32 and 64 bit, Linux and

Mac OS X. The client runs on Android 4.x or higher. The source code can be found

at https://github.com/ihsf.

7.2. Further Information

Additional information on used products and libraries can be found here:

• www.splashtop.com
• shield.nvidia.com
• bitbucket.org/wolfpld/etcpak
• code.google.com/p/lz4
• www.samsung.com/global/microsite/gearvr
• code.google.com/p/currentwidget
• www.durovis.com
• www.simvalley-mobile.de/Android-Watch-silver-PX-1794-919.shtml



16 REFERENCES

Figure 9. Sample scene in our open source release of the minimal ray tracer (minrt).

References

E. Ahlers. Rasante Datenjongleure. c't Magazin, 1:80�89, 2014.

A. Chalmers and E. Reinhard. Parallel and distributed photo-realistic rendering.

In Philosophy of Mind: Classical and Contemporary Readings. Oxford and, pages

608�633. University Press, 1998.

R. W. Floyd and L. Steinberg. An adaptive algorithm for spatial grey scale. In

Proceedings of the Society of Information Display, volume 17, pages 75�77, 1976.

G. Fox, R. Williams, and G. Messina. Parallel Computing works! Morgan Kauf-

mann, 1st edition, 1994.

A. Hildebrandt, A. Dehof, A. Rurainski, A. Bertsch, M. Schumann, N. Toussaint,

A. Moll, D. Stockel, S. Nickels, S. Mueller, and O. Lenhof, H.-P.and Kohlbacher.

BALL - Biochemical Algorithms Library 1.3. BMC Bioinformatics, 11(1):531,

2010.

C.-Y. Huang, C.-H. Hsu, Y.-C. Chang, and K.-T. Chen. GamingAnywhere: An

open cloud gaming system. Proceedings of the 4th ACM Multimedia Systems

Conference, MMSys 2013, pages 36�47, 2013.

A. Lö�er, L. Pica, H. Ho�mann, and P. Slusallek. Networked displays for VR appli-

cations: Display as a Service (DaaS). In Virtual Environments 2012: Proceedings

of Joint Virtual Reality Conference of ICAT, EuroVR and EGVE (JVRC), 10

2012.

Madhusood, A. Best practices for using Intel Cilk Plus. White Paper, Intel Corpo-

ration, 7 2013. http://software.intel.com/sites/default/files/article/

402486/intel-cilk-plus-white-paper.pdf.

L. Marsalek, A. Dehof, I. Georgiev, H.-P. Lenhof, P. Slusallek, and A. Hildebrandt.

Real-time ray tracing of complex molecular scenes. In Information Visualisation

(IV), 2010 14th International Conference, pages 239�245. IEEE, 2010.

T. McReynolds. Programming with OpenGL: An Introduction. http://www.inf.

ed.ac.uk/teaching/courses/cg/Web/intro_ogl.pdf, 1996.



REFERENCES 17

A. Moll, A. Hildebrandt, H.-P. Lenhof, and K. O. BALLView: a tool for research

and education in molecular modeling. Bioinformatics, 22(3):365�366, 2006.

I. Nave, H. David, A. Shani, Y. Tzruya, A. Laikari, P. Eisen, and P. Fechteler.

Games@Large graphics streaming architecture. Proceedings of the International

Symposium on Consumer Electronics, ISCE, 2008.

D. Pohl, G. Johnson, and T. Bolkart. Improved pre-warping for wide angle, head

mounted displays. Proceedings of the ACM Symposium on Virtual Reality Soft-

ware and Technology, VRST, pages 259�262, 2013.

D. Pohl, S. Nickels, R. Nalla, and O. Grau. High quality, low latency in-home

streaming of multimedia applications for mobile devices. In Federated Conference

on Computer Science and Information Systems (FedCSIS), 2014, pages 687�694,

Sept 2014.

T. Richardson, Q. Sta�ord-Fraser, K. Wood, and A. Hopper. Virtual network com-

puting. IEEE Internet Computing, 2(1):33�38, 1998.

J. Singh, A. Gupta, and M. Levoy. Parallel visualization algorithms: performance

and architectural implications. Computer, 27(7):45�55, 1994.

J. Ström and T. Akenine-Möller. ipackman: High-quality, low-complexity texture

compression for mobile phones. Proceedings of the SIGGRAPH/Eurographics

Workshop on Graphics Hardware, 2005:63�70, 2005.

D. Vo and T. Nguyen. Quality enhancement for motion JPEG using temporal

redundancies. IEEE Transactions on Circuits and Systems for Video Technology,

18(5):609�619, 2008.

I. Wald, S. Woop, C. Benthin, G. S. Johnson, and M. Ernst. Embree: A kernel

framework for e�cient CPU ray tracing. ACM Trans. Graph., 33(4), July 2014.

Y. Wang, J. Ostermann, and Y. Zhang. Video Processing and Communications,

page 29. Prentice Hall, 2002.

Z. Wang, L. Lu, and A. Bovik. Video quality assessment based on structural dis-

tortion measurement. Signal Processing: Image Communication, 19(2):121�132,

2004.

T. Wiegand, G. Sullivan, G. Bjøntegaard, and A. Luthra. Overview of the

H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems

for Video Technology, 13(7):560�576, 2003.

Wireless LANWorking Group. IEEE Standard 802.11ac-2013 (Amendment to IEEE

Std 802.11-2012), 12 2013.


